mile米乐m6
轴承振动检测仪
  1. 机器故障分析仪
  2. 轴承振动检测仪
mile米乐m6网页版登录入口_米乐m6娱乐平台最新版

    Tel: 010-63727997

    010-63728488

    Fax: 010-63785579

    销售部: 1585894649@qq.com

        sales_hr@126.com

    技术部:sxcxfjc_hr@126.com

    上海办事处:

    Tel: 02162812527

    Fax: 02152540166

    济南办事处:

    Tel0531-88877995

    手机:13370559233

    Fax0531-67712122

    Emailsxcxfjc@126.com

轴承振动检测仪

mile米乐m6电动零部件异响分析参数方案(一)

来源:M6网页版登录入口 作者:米乐m6娱乐平台最新版  发布时间: 2024-05-06 10:53:40  浏览次数: 2
产品介绍:

  如果噪声中出现了明显的调幅(AM)现象,BK Connect软件还提供包络分析(Envelope)。包络分析能够将调制信号载波信号中分离出来。如下图所示,红色为载波信号,黑色为调制信号,经过包络分析后,即可得到右下角的调制频率fm。

  包络分析除了用于调制信号的解调分析以外,还适用于电机轴承的故障检测,能从轴承振动噪声信号中识别出微弱的故障信号,在出现故障的早期阶段即能发现故障。

  如下图右图的例子中,对载波所在频段(125±100Hz)进行带通滤波后,对包络线时间历程曲线进行FFT分析。Y轴幅值为包络线的频谱幅值。在频谱中发现了明显的峰值,说明信号中存在调幅现象。在噪声信号的FFT分析结果中,如下图左图所示,我们发现在126Hz和120Hz有相邻的峰值,其中幅值更高的126Hz为载波频率,幅值较低的120Hz为调制信号频率。根据调制信号幅值和载波信号幅值的比值,可计算出调制度(Degree of Modulation),为0.082/0.395≈21%。

  如果在分析之前,无法确定载波频率的频率范围,则可以先进行不同频段的包络分析,调查这些频段的数据中,是否存在调制。如下图例子所示,X轴横坐标为调制频率,左侧Y轴纵坐标为包络分析的载波频带中心频率,Z轴颜色坐标为调制信号幅值。从图中可以发现2500Hz载波频带和80Hz调制频率处有明显峰值(图中圆圈位置),同时在其他载波频带,如500Hz处,也存在多个调制频率的峰值(图中橙色圆圈位置),说明这些位置存在明显的调制现象。

  由于电机和传动机构的结构特点,旋转机构经常发出一些纯音。这些纯音可能让电机噪声听起来尖锐刺耳、不和谐,令人烦躁。在分析纯音问题时,需要考虑宽频信号的掩蔽效应。当一个宽频信号中存在一个纯音时,纯音的声压级幅值超过纯音所在临界频带声压级幅值6个dB以上,人耳才能听到这个纯音。

  如果小于6dB,则人耳听不到这个纯音,它被周围频带的宽频声音所掩蔽。下图为纯音比和突出比的图例和定义。针对人耳的这种特性,BK Connect软件提供了多种纯音分析参数,包括纯音比(Tone-to-noise Ratio) 、突出比(Prominence Ratio)和音调(Tonality),这些参数能自动判断噪声中是否存在明显的纯音。

  FFT和1/3倍频程多用于表述声音能量在频域上的分布。它们的纵坐标为声音幅值,比如声压级dB、A计权声压级dB(A)等,横坐标为频率。FFT和1/3倍频程最明显区别之一是频率坐标的分辨率。FFT的频率分辨率在各个频率都是一致的(如下图左图),而1/3倍频程的频率分辨率是中心频率的固定百分比(约23%),频率越低,每个柱状图代表的频段越窄,也就是频率分辨率越小,反之频率越高,频带越宽,频率分辨率越大(如下图中图)。

  FFT和1/3倍频程的本质区别是噪声幅值的计算方法,FFT利用傅里叶变换原理,进行时域频域转换,得到各频率的噪声幅值。1/3倍频程采用时域滤波器的方法,对时域信号进行带通滤波,得到各频段噪声幅值。

  FFT和1/3倍频程主要表述声音的能量分布,没有考虑心理声学中的频域掩蔽效应,因此与人对声音的主观感受存在一定的差距。为了减少这种差距,在进行心理声学分析时,通常使用临界频带(单位bark)表述不同频率的噪声,临界频带将人耳可听频段分为0-24bark(如下图右图)。

  如果噪声信号具有非稳态特性,甚至是瞬态特性,除了上述常见的参数以外,还经常使用其他一些参数。他们由常规参数衍生出来的,这些参数也常用于评价电动零部件的异响。

  在研究噪声问题时,噪声中除了与自身形成机理有关的特征成分以外,还经常包含随机成分,这使得噪声数据经常分布在一定数值范围内。为了方便量化噪声数据的分布特性,引入统计学的一些方法,比如百分位数,常见的百分位数有第1、第50(也称为中位数)、第99百分位数等。

  以连续重复测试的三组数据为例,在下图的响度时间历程中,由于被测物运行状态等因素的影响,无法保证三组数据的最大值是最稳定的、一致的。表格中为三组数据的第0至第15百分位数汇总,其中第0百分位数(第三行,即响度最大值)标准差为0.33Sone,而第3、4百分位数(第四、五行)标准差均明显小于第0百分位数的标准差,因此第3、4百分位数具有更高的一致性。

  使用临界频带表述不同频率的响度时,我们将结果称为特征响度,如下图结果,横坐标为临界频带(bark),纵坐标为响度。在研究噪声的频域分布特性时,可以利用特征响度曲线计算出积分面积。

  再利用积分面积百分位数所对应的频率,来表述频谱分布特性。百分位数的结果为特征频率,单位Bark。以下图为例,左右两图为两个不同声音的特征响度数据,两个声音的总响度分别为13.00 Sone和12.74 Sone,比较接近,但是它们的频谱分布是不同的,例如,在9 Bark附近,左图数值小于右图,而在16.5 Bark附近,左图数值大于右图。以第50百分位频率为例,低于某个特征频率的积分面积,占总积分面积的50%,也可以描述为,某个临界频带以上和以下特征频率积分面积相等,即特征响度“重心”,此临界频带对应的特征频率即为第50百分位频率。

  在上述两组数据中,左右两图的第50百分位频率分别为12.5 Bark和11 Bark(图中红色竖线),这意味着左图的特征响度“重心”比右图更偏右说明特征响度主要集中在较高频段。除了使用第50百分位频率以外,也可以使用其他百分位数(比如第70百分位数)表示特征响度的分布特性。

  对于瞬态噪声信号,在瞬态噪声的时间历程中,频率分布是随时间变化的。以电机停止运行时的特征响度时域历程为例,如下图左侧图形所示,在0.09-0.25秒(蓝框内的时间范围)出现瞬态冲击噪声,在不同时刻下,特征响度是不同的。利用各个时刻的特征响度计算出百分位频率,从而反映出各个时刻的频率分布变化趋势。下图右侧图形为第70百分位频率的时间历程,其中的0秒为冲击噪声的峰值时刻,作为起始时刻。第70百分位频率曲线随时间逐步降低,意味着特征响度中的频率成分,随着时间逐渐向更低频率转移。

  当电机处于匀速运行时,由于负载或阻力的影响,容易引起噪声的低频颤动,如下图所示,在响度时间历程数据中,从2.4秒至5.1秒(蓝框内),响度值出现了明显的低频颤动。如果此类颤动的频率在2-8Hz(也有文献规定为1-10Hz)时,通常将之称为颤音(Warble)。下图的颤音现象中,包含了多个周期的极大值和极小值,如图所示的6个周期的极值。

  伺服电机是一种能够将电能转化为机械能的装置,它可以精确地控制速度和位置,具有反应快速等特点,通常被应用在自动控制系统中执行元件,是伺服系统中的重要组成部分。 01 伺服电机的工作原理 伺服电机主要由伺服驱动器、电动机和其他相关部件组成。伺服马达用来提供动力,而伺服则负责调整输出速度和位置,并将其转化为电信号发送给执行机构。 伺服电动机通常由两部分组成:一组感应电动机,另一组是被称为转子的飞轮。当转子旋转时,产生电磁场,带动另一个被称为马达的小型机械零件工作。转子上有两个不同的线圈,它们与吸盘连接在一起。吸盘会把转子上面的线缠绕起来,使整个马达看起来像一把剑。齿轮装置使得转子旋转顺畅,同时也限制了噪音。 02 伺服电机

  的工作原理 /

  本文介绍了一种基于专用芯片UC3842的开关稳压电源。在电机调速中,该电源提供功率开关元件基极(栅极)驱动电压和控制电路工作电压。开关电源性能的好坏直接影响到电机调速的工作可靠性。该电源是为30 kW开关磁阻电机设计的,也适用于采用功率MOSFET或IGBT作为开关元件的中小功率感应电机调速。 1主回路方案 1.1电源电路 此电源是为30 kW开关磁阻电机设计的,此电机功率变换器的主电路为不对称半桥电路 。采用反激变换器结构 ,具有结构简单、损耗小的优点,但输出电压纹波较大,通常用在150 W以下的电源中。具体电路如图1所示。 此电源为单芯片集成稳压电源,PWM芯片采用UC3842。U

  Diodes公司 (Diodes Incorporated) 推出单相无刷直流电机前置驱动器ZXBM1021,为多种消费性及工业产品内的散热风扇、排气扇、抽风机、电机和泵,提供多功能且小巧的变速控制解决方案。这个灵活的前置驱动器集成了PWM信号积分器及MOSFET缓冲器等常用外部元件,使设计人员得以大幅简化系统结构,以及减少整体电路板元件数量。 这款前置驱动器可通过直接运用外部PWM信号、直流电压信号或热敏电阻网络输入,严密控制电机转速。它集成了霍尔偏置和放大器电路,以确保与各种霍尔效应传感器相兼容。集电极开路频率发生器引脚提供转速输出,能够在外部监控旋转及速度。为防止在控制信号消失的情况下出现电机堵转或速度低于最低值,Z

  摘要:单相电机变频调速具有相当的实际意义。依据其调速的基本理论,就其常用的功率主电路部分和控制方案进行了详细的分析和综述,讨论了目前研究工作中存在的问题,并对其发展的方向进行了展望,给出了一些个人的观点。 关键词:变频调速;单相电机;拓扑;控制策略 引言 变频调速技术在异步感应电机调速系统中,以其优异的调速和启动性能、高功率因数和节电效果,而被公认为最具发展前途的调速手段。 只有两套绕组的单相交流异步电动机,结构简单,生产成本低廉,使用维护方便,在小功率电机应用方面,如电冰箱、洗衣机、电风扇、空调等家用电器,汽车附件等领域占据主导地位。但是其工作效率低,仅为60%~70%,运行性能差,启动转矩小,一般不能应用在需要调速的场

  这就意味着加工制造精度、装配精度的要求非常高,带来了极高的制造成本与极低生产柔性化程度。 高制造难度也导致了轴向磁通电机生产规模化不够,市场容量较小,零部件配套跟不上。不仅轴向磁通电机本身, 连接传动轴之。


mile米乐m6 上一篇:中国电信集团有限公司 下一篇:关于汽轮机冲转过程中的几个重要问题解释

Copyright © 2002-2020 mile米乐m6网页版登录入口_米乐m6娱乐平台最新版
地址:北京市丰台区科学城百强大道6号宝隆公寓A座2607室
电话:86-10-63727997,传真:86-10-63785579
邮箱:1585894649@qq.com sales_hr@126.com
mile米乐m6